\square

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD M.E. (ECE: CBCS) I-Semester Main Examinations, January-2019

(Communication Engineering \& Signal Processing)

Advanced Digital Signal Processing

Time: 3 hours
Max. Marks: 60
Note: Answer ALL questions in Part-A and any FIVE from Part-B

Q.No.	Stem of the question			
Part-A $(\mathbf{1 0} \times 2=20$ Marks $)$				
1. What is the advantage of Goertzel algorithm to compute FFT? Mention a practical				
application of it.				

2. Find the number of additions, multiplications and memory locations required for direct form II realization of an IIR digital filter transfer function having numerator polynomial of order M and denominator polynomial of order N .
3. List the advantages of Multirate Signal Processing.
4. List the conditions in terms of analysis and synthesis filters for alias free and perfect reconstruction of two channel QMF bank.
5. How do you find approximation coefficients in DWT?
6. Explain dilation equation using scaling and wavelet coefficients.
7. Compare the computational complexity of LMS and RLS algorithms for adaptive filters.
8. Find first order optimal predictor coefficients and minimum mean square error for a real WSS process with autocorrelation sequence $\gamma_{x x}(0)=0.1482, \gamma_{x x}(1)=$ 0.05 .
9. List the performance measures for power spectrum estimator.
10. Give the advantages of parametric methods over non-parametric methods for power spectrum estimation.

Part-B $(5 \times 8=40$ Marks)

11. a) Compute the linear convolution of the following two sequences

$$
x_{1}(n)=(3,2,1,2) \text { and } x_{2}(n)=(1,2,1,2) .
$$

b) Develop a lowpass Butterworth digital filter with 3 dB cutoff frequency at 50 Hz and attenuation of at least 10 dB for frequency larger than 100 Hz . Sampling frequency: 500 Hz .
12. a) Develop a two-stage decimator to convert a single bit stream at 3072 kHz into a multi-bit stream at 48 kHz . for which the pass band and stop band ripples for the decimator are 0.001 and 0.0001 , respectively. The pass band ranges from $0-20 \mathrm{kHz}$.
b) Consider a two channel QMF bank with the analysis and synthesis filters given by

$$
H_{0}(z)=2+6 z^{-1}+z^{-2}+5 z^{-3}+z^{-5}, H_{1}(z)=H_{0}(-z) ; \quad G_{0}(z)=H_{0}(z) ; G_{1}(z)=-H_{1}(z) .
$$

Examine the QMF bank for alias-free and perfect reconstruction.

M	L	CO	PO
2	1	1	1
2	1	2	1
2	1	3	1
2	4	4	3
2	1	5	1
2	1	5	1
2	4	6	1
2	1	6	3
2	1	7	1
2	1	7	1

$\begin{array}{llll}3 & 1 & 1 & 1\end{array}$
$\begin{array}{llll}5 & 3 & 2 & 1\end{array}$

533
$\begin{array}{llll}3 & 4 & 4 & 1\end{array}$

